Roll No.

Total Pages: 04

GSE/D-21

790

ELECTRICITY, MAGNETISM AND ELECTROMAGNETIC THEORY Paper II

Time : Three Hours] [Maximum Marks : 40

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

Section A

- 1. Attempt all parts:
 - (a) Let \vec{r} denotes the position vector of any point in three dimensional space and $|\vec{r}| = r$. Find $\vec{\nabla} \cdot \vec{r}$ and $\vec{\nabla} \times \vec{r}$.
 - (b) For a ferromagnetic material, permeability μ and H are related as :

$$\mu = \left[\frac{0.4}{H} + 12 \times 10^{-4} \right] \text{ henry/metre}$$

For B to be 1 tesla, find the value of H in ampere/meter.

(2)L-790

- (c) Name the vector which is associated with directional energy flux in an electromagnetic wave. 1
- (d) In a series LCR circuit, by how much, quality factor of a series resonant circuit increase when inductor is increased to four times its value and capacitance is reduced to one fourth of its value?

 2
- (e) Show that curl of gradient of a scalar function is always zero.

Section B Unit I

- **2.** (a) Verify Gauss's divergence theorem for the function $\vec{F} = \left(4xz\hat{i} y^2\hat{j} + yz\hat{k}\right)$ over the surface S of the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.
 - (b) Deduce an expression for the electrical pressure acting normally outward on the surface of a charged conductor.
- **3.** (a) Evaluate: **3**

$$\nabla \cdot \left[r \nabla \left(\frac{1}{r^3} \right) \right]$$

- (b) State and prove Stokes' theorem. 3
- (c) Write down the characteristics of the gradient of a scalar field.

2

(2)L-790

Unit II

- 4. (a) Give Langevin's theory of paramagnetism and hence prove that magnetic suceptibility χ_{para} of paramagnetic substance is inversely proportional to absolute temperature.
 (b) Write down Gauss's law in vector form in magnetostatics.
- 5. (a) Explain in detail Domain theory of ferromagnetism.3

(b) Derive Ampere's law for steady current in differential form.

(c) Distinguish between hard and soft magnetic materials.

Unit III

- 6. (a) Derive Maxwell's equation from Faraday's law. 3
 - (b) The magnetic field of an electromagnetic wave is given by:

$$\vec{\mathbf{B}} = 1.6 \times 10^{-6} \cos \left(2 \times 10^7 z + 6 \times 10^{15} t\right) \left(2\hat{i} + \hat{j}\right) \text{Wbm}^{-2}$$

Find the associated electric field in volt m⁻¹.

(c) Define Poynting Vector. What does it represent?

Give its unit.

3

(2)L-790

- 7. (a) Derive the boundary conditions satisfied by \vec{H} and \vec{D} at the interface of two media.
 - (b) A lamp emits monochromatic green light uniformly in all directions. The lamp is 3% efficient in converting electrical power to electromagnetic waves and consumes 100 W of power. Find the amplitude of the electric field associated with the electromagnetic radiation at a distance of 5 m from the lamp.
 3

Unit IV

8. (a) Determine the impedance and phase difference between the current and e.m.f. in an a.c. circuit containing resistance and inductance using j-operator.

5

(b) Define quality factor and show that :

$$Q = R \sqrt{\frac{C}{L}}$$

for a parallel resonant circuit.

3

- 9. (a) Determine impedance and phase difference between current and e.m.f. in an a.c. circuit containing resistance and capacitance using j-operator.
 - (b) Calculate quality factor for a series resonant circuit.

1

(2)L-790 4