Roll No.

Total Pages: 2

GSM/D-21

887

ADVANCED CALCULUS

Paper-BM-231

Time Allowed: 3 Hours]

[Maximum Marks : 27

Note: Attempt **five** questions in all, selecting **one** question from each Unit. Question No. **1** is compulsory.

Compulsory Question

1. (a) State Rolle's Theorem.

1

(b) Find
$$\frac{\partial^2 u}{\partial x^2}$$
 and $\frac{\partial u}{\partial y}$ for functions $u = e^{xy}$.

- (c) Examine for extreme value $f(x, y) = 3x^2 y^2 + x^3$ at (0, 0).
- (d) Find the equation of tangent line at the point t = 1 to the curve

$$x = 3 + t$$
, $y = -t^2$, $z = 3 + t^2$.

IINIT-I

2. (a) If $f(x) = \begin{cases} \frac{|x-2|}{2-x}, & x \neq 2 \\ -1, & x = 2 \end{cases}$, find whether f is continuous at x = 2.

 $2\frac{1}{2}$

- (b) Prove that the function $f(x) = 2x^2 + 3x 4$ is uniformly continuous on [-2, 2]. $2\frac{1}{2}$
- 3. (a) Examine the applicability of Rolle's theorem for the function

$$f(x) = (x^2 - 4x + 3) e^{2x} \text{ in } [1, 3].$$
 $2\frac{1}{2}$

(b)
$$\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{1/x}$$
 2½

UNIT-II

4. (a) Show that the function $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$

$$(x, y) \neq (0, 0)$$
 is discontinuous at $(0, 0)$. $2\frac{1}{2}$

887/K/99 P. T. O.

(b) If
$$u = \sin^{-1} \left[\frac{x^{1/3} + y^{1/3}}{x^{1/2} + y^{1/2}} \right]^{1/2}$$
, prove that
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{\tan u}{144} \quad (13 + \tan^2 u).$$

5. (a)
$$Z(x+y) = x^2 + y^2$$
, show that $\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left(1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)$. $2\frac{1}{2}$

(b) Expand e^x cosy in terms of x and y as far as terms of third degree. $2\frac{1}{2}$

UNIT-III

- 6. (a) If $f: \mathbb{R}^2 \to \mathbb{R}$ be a function such that both fx and fy are differentiable at a point (a, b) of the domain, then prove that fxy(a, b) = fyx(a, b).
 - (b) Show that function $f(x, y) = \sqrt{x^2 + y^2}$ is continuous at point (0, 0) but f(x), f(y) do not exit at (0, 0).
- 7. (a) Find the values of x, y, z for which $\frac{5xyz}{x + 2y + 4z}$ is maximum given that xyz = 8.
 - (b) Find the extreme values of the function $x^2 + y^2 + z^2$ subject to the condition $xy + yx + zx = 3a^2$. $2\frac{1}{2}$

UNIT-IV

- 8. (a) Find the osculating plane at (x_1, y_1, z_1) curve of intersection cylinders $x^2 + z^2 = a^2$, $y^2 + z^2 = b^2$. $2\frac{1}{2}$
 - (b) Find the curvature and torsion of the curves $x = a \cos t$, $y = a \sin t$, $z = at \cot \alpha$.
- 9. (a) Show that $\tau = \frac{[\vec{r}' \ \vec{r}'' \ \vec{r}''']}{|\vec{r}' \ \vec{r}'''|^2}$
 - (b) Find the unit normal vector to the surface $2xz^2 3xy 4x = 7$, at the point (1, -1, 2).