Roll No.

Total Pages: 04

GSE/D-21

784

SOLID GEOMETRY BM-113

Time : Three Hours] [Maximum Marks : 40

Note: Attempt *Five* questions in all, selecting *one* question from each Section. Q. No. 1 is compulsory.

(Compulsory Question)

1. (a) Find the nature of the conic:

$$2x^2 - 72xy + 23y^2 - 4x - 28y - 48 = 0.$$

- (b) Find the equation to the sphere through the circle $x^2 + y^2 + z^2 = a^2$, z = 0 and the point (α, β, γ) . 2
- (c) Find the equation of the cone circumscribing the sphere $x^2 + y^2 + z^2 2x + 2y 2 = 0$ with its vertex at (1, 1, 1).
- (d) Find the equation of the plane which cuts the paraboloid $2x^2 y^2 = 2z$ in a conic with its centre at the point (2, 3, 4).

Section I

2. Trace the conic :

$$9x^2 + 24xy + 16y^2 - 2x + 14y + 1 = 0$$
.

(5)L-784

1

- 3. (a) Find the equation of the parabola which touches the conic $x^2 + xy + y^2 2x 2y + 1 = 0$ at the point where it is cut by the line x + y + 1 = 0.
 - (b) Find the conics confocal with $x^2 + 2y^2 = 2$ which passes through the point (1, 1).

Section II

4. (a) Find the equation of the sphere which touches the plane 3x+2y-z+2=0 at the point P (1, -2, 1) and cuts orthogonally the sphere:

$$x^2 + y^2 + z^2 - 4x + 6y + 4 = 0$$
.

- (b) Find the equation to the right circular cone, whose vertex is P (2, -3, 5), axis PQ which makes equal angles with the axes and which passes through A (1, -2, 3).
- 5. (a) Find the condition that the plane lx + my + nz = 0 may touch the cone $4x^2 y^2 + 3z^2 = 0$.
 - (b) Find the equation of a right circular cylinder of radius 2, whose axis passes through (1, 2, 3) and has direction cosines proportional to 2, 1, 2.

Section III

- 6. (a) Find the equations of the tangent planes to $2x^2 6y^2 + 3z^2 = 5$ which pass through the lines x + 9y 3z = 0, 3x 3y + 6z 5 = 0.
 - (b) Prove that the sum of the squares of the reciprocals of any *three* mutually perpendicular diameters of an ellipsoid is constant.
- 7. (a) Prove that the six normals from a point to an ellipsoid lie on a curve of second degree.

 4
 - (b) Show that the plane x+2y+3z=2 touches the conicoid $x^2-2y^2+3z^2=2$ and find the point of contact.

Section IV

8. (a) Find the conditions that any *two* lines $\frac{x}{l_1} = \frac{y}{m_1} = \frac{z}{n_1}$;

$$\frac{x}{l_2} = \frac{y}{m_2} = \frac{z}{n_2}$$
 be the axes of the section of the conicoid $ax^2 + by^2 + cz^2 = 1$, by a plane through them.

- (b) Find the equations to the generators of the hyperboloid $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$, which pass through the point $(a\cos\alpha, b\sin\alpha, 0)$.
- 9. Reduce to standard form:

$$2y^2 - 2yz + 2zx - 2xy - x - 2y + 3z - 2 = 0$$

and state the nature of surface represented by the equation.

8