Roll No.

Total Pages: 04

5015

MDQ/D-21

ANALYTICAL MECHANICS AND CALCULUS OF VARIATIONS MM-502

Time : Three Hours] [Maximum Marks : 80

Note: Attempt *Five* questions in all, selecting *one* question from each Section and the compulsory question.

Section I

- (a) Obtain the Euler's equation for the functional which depends upon one dependent and two independent variables.
 - (b) Find the extremal of the functional : **8** $I[y, z] = \int_0^1 (y'^2 + z'^2) dx$ with y(0) = 0, z(0) = 0, y(1) = 1, z(1) = 2.
- 2. (a) Find the natural boundary conditions for the functional $I[y] = \int_a^b f(x, y, y') dx$, which attains extremal curve y(x).
 - (b) Find the shortest distance curve from the point (x_1, y_1) to the line y = mx + b.

(2)L-5015

Section II

- 3. (a) Define the following terms:
 (i) Stationary Constraints
 (ii) Holonomic and non-Holonomic constraints
 (iii) Scleronomic Constraints
 (iv) Rheonomic Constraints
 - (b) Derive Lagrange's equation of first kind. 8
- **4.** (a) Prove that :

$$\frac{d\mathbf{E}}{dt} = \sum_{i=1}^{n} \tilde{\mathbf{Q}}_{i} \dot{q}_{i} + \frac{\partial \pi}{\partial t}, \frac{d\mathbf{E}}{dt} = \sum_{i=1}^{n} \tilde{\mathbf{Q}}_{i} \dot{q}_{i}$$

and E = constant, for different system of motion. 8

(b) Prove that the generalised forces: 8

$$Q_{i} = \frac{\partial \pi_{i}}{\partial t} + \sum_{k=1}^{n} \left(\frac{\partial \pi_{i}}{\partial q_{k}} - \frac{\partial \pi_{k}}{\partial q_{i}} \right) \dot{q}_{k} - \frac{\partial \pi}{\partial q_{i}}$$

Section III

5. (a) Prove that the necessary and sufficient condition for function $f(t, q_i, p_i)$ to be the integral of equation of motion is:

$$\frac{\partial f}{\partial t} + (f H) = 0$$

(b) State and prove Hamilton's principle. 8

(2)L-5015

6	Daritza	Inachila	equation
u.		TALCOUNT	еннанкон

Section IV

- 7. (a) State and prove Jacobi's theorem. 8
 - (b) Show that the transformation: 8

$$\tilde{q}_i = \alpha p_i, \tilde{p}_i = \beta q_i$$

 $(i = 1, ..., n), \alpha \neq 0, \beta \neq 0$ is canonical with $\tilde{H} = -\alpha\beta H$.

16

8. Define Lagrange's bracket and show that : 16

$$[q_i, q_k] = 0, [p_i, p_k] = 0, [q_i, q_k] = c\delta_k$$

(i, k = 1,, n), where c is the valence of canonical transformation expressing the necessary and sufficient condition for the transformation to be canonical.

Compulsory Question

- 9. (i) Define a functional with example. 2
 - (ii) Find the extremal of the functional: 2

$$I[y] = \int_0^1 (y'^2 - y^2) dx$$

with y(0) = 0 and y(1) = 1.

- (iii) Define degree of freedom. 2
- (iv) Prove that:

$$(C\phi\psi) = C(\phi\psi),$$

where C is constant.

(2)L-5015

3

(v)	Define free canonical transformation.	2
(vi)	What is general equation of dynamics ?	2
(vii)	State principle of virtual work.	2
(viii)	Prove that:	2
	$T = T_2 + T_1 + T$	

(2)L-5015