Roll No.

Total Pages : 05

8

MDQ/D-215014MATHEMATICSMM-501Functional Analysis

Time : Three Hours][Maximum Marks : 80

Note : Attempt *Five* questions in all, selecting *one* question from each Section and the compulsory question.

Section I

1.	(a)	Show t	hat C[a	a, b]	can be	made	into	an ir	complete
		normal	linear	space	e w.r.t.	a sui	table	norm	n. 8

- (b) In a finite dimensional normed space the closed unit ball is compact. What can you say about the converse of this statement ? Give full justification.
- 2. (a) Discuss the boundedness of :
 (i) Differentiation operator
 - (ii) Integral operator.
 - (b) Compute the dual space of the space co. 8

1

(3)L-5014

Section II

3. (a) Let X be a normed space and let $x_0 \neq 0$ be any element of X. Show that there is a bounded linear functional \hat{f} on X such that : 8

$$|\hat{f}|| = ||x_0||^{-1}$$
 and $\hat{f}(x_0) = 1$.

- (b) A reflexive normed space is a Banach space. Prove or disprove this statement.
- 4. (a) If the dual space X' of a normed space X is separable, show that X itself is separable.8
 - (b) If X and Y are Banach spaces and T_n ∈ B(X, Y),
 n = 1, 2,...., show that the following statements are equivalent :
 - (i) $(||T_n||)$ is bounded
 - (ii) $(||T_n x||)$ is bounded for all $x \in X$,
 - (iii) $(|g(T_n x)|)$ is bounded for all $x \in X$ and all $g \in Y'$.

Section III

5. (a) (i) Show that
$$T: \mathbb{R}^2 \to \mathbb{R}$$
 defined by
 $(\xi_1, \xi_2) \mapsto (\xi_1)$ is open. Is the mapping
 $(\xi_1, \xi_2) \mapsto (\xi_1, 0)$ an open mapping ?

(3)L-5014

(ii) Show that an open mapping need not map closed sets onto closed sets.

8

- (b) Let X and Y be Banach spaces and T : D(T) → Y a closed linear operator, where D(T) ⊂ X. If D(T) is closed in X, show that the operator T is bounded.
- 6. (a) Let X be the vector space of all ordered pairs of complex numbers. Can we obtain the norm defined on X by ||x|| = ||ξ₁|| + |ξ₂|, x = (ξ₁, ξ₂) from an inner product ? Justify.
 - (b) Show that the subset $M = \{y = (\eta i) : \sum n_j = 1\}$ of complex space \mathbb{C}^n is complete and convex. Also find the vector of minimum norm in M. 10

Section IV

7. (a) Let (e_k) be an orthonomal sequence in a Hilbert space H. Show that for every $x \in H$, the vector $y = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$ exists in H and x - y is orthogonal to every e_k . 8

(3)L-5014