Roll No.

Total Pages: 04

MDE/D-21

4316

TOPOLOGY-I MM-403

Time : Three Hours] [Maximum Marks : 80

Note: Attempt *Five* questions in all, selecting *one* question from each Section. Q. No. **9** is compulsory. All questions carry equal marks.

Section I

- 1. (a) Show that intersection of two topologies is again a topology. Is it true for union also? Explain.
 - (b) Let C^* be a closure operator defined on a set X. Let F be the family of all subsets F of X for which C^* (F) = F and let T be a family of all complements of members of F. Then prove that T is a topology for X and if C is the closure operator defined by the topology T, then $C^*(E) = C(E)$ for all subsets $E \subseteq X$.
- 2. (a) Prove that a family **B** of sets is a base for some topology for the set $X = U\{B; B \in \mathbf{B}\}$ if and only if for every $B_1, B_2 \in B$ and $x \in B_1 \cap B_2$, there exists a $B \in \mathbf{B'}$ such that $x \in B \subseteq B_1 \cap B_2$.

(5)L-4316

- (b) Let (X, T) and (X^*, T^*) be the two topological spaces and $f: X \to X^*$. Prove that the following conditions are each equivalent to the continuity of f on X:
 - (i) The inverse image of every open set in X^* is an open set in X.
 - (ii) The inverse image of every closed set in X^* is a closed set in X.
 - (iii) $f(C(E)) \subseteq C^*(f(E))$ for every $E \subseteq X$.

Section II

- 3. (a) Show that the property of a space being a T_0 -space is preserved under one to one, onto, open mapping and hence is a topological property.
 - (b) Prove that a T₁-space X is countably compact if and only if every countable open covering of X is reducible to a finite subcover.
- **4.** (a) Prove that an infinite Hausdorff space X contains an infinite sequence of non-empty disjoint open sets.
 - (b) Prove that the property of a space being T_4 is Hereditary.

Section III

5. (a) Prove that complete regularity is Hereditary property.

(5)L-4316

- (b) Prove that a topological space is completely regular if and only if the family of all continuous real valued functions on it distinguishes points from closed sets.
- 6. (a) Prove that if the open set G has a non-empty intersection with a connected set C in a T₄-space X, then either C consists of the only point or the set C∩G has cardinality greater than or equal to cardinality of reals.
 - (b) Prove that a net (x_{λ}) has the point x as a cluster point if and only if it has a subnet which converges to x.

Section IV

- 7. (a) If E is a subset of a subspace (X^*, T^*) of a topological space (X, T), then prove that E is T^* compact if and only if it is T-compact.
 - (b) Prove that a topological space (X, T) is compact if and only if any family of closed sets having the finite intersection property has a non-empty intersection.
- 8. (a) Prove that $X \times Y$ is compact if and only if X and Y are compact.

(b) Let $P: \Lambda \to X$ be a net and **H** the filter associated with it. Let $x \in X$. Then prove that P converges to x as a net if and only if **H** converges to x as a filter. Also, x is a cluster point of the net P if and only if x is a cluster point of the filter **H**.

Section V

- 9. (a) Define countable complement topoplogy.
 - (b) Define closed topological space.
 - (c) Define weakly hereditary property.
 - (d) State finite intersection property.
 - (e) Define first and second countable space.
 - (f) Explain with example that every separable space need not be second axiom.
 - (g) Define Ultrafilters.