Roll No. Total Pages: 05

MDE/D-21 4315

REAL ANALYSIS-I MM-402

Time : Three Hours] [Maximum Marks : 80

Note: Attempt *Five* questions in all, selecting *one* question from each Section and the compulsory question.

Section I

- 1. (a) Show that $g \in R(\alpha)$ on [a, b] if and only if for every $\varepsilon > 0$, there exists a partition Q of [a, b] such that $U(\theta, g, \alpha) L(\theta, g, \alpha) < \varepsilon$.
 - (b) Suppose $f \ge 0$, f is continuous on [a, b] and $\int_a^b f(x)dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$. State clearly the results used by you. 8
- 2. (a) If g maps [a, b] into \mathbf{R}^n and if $g \in \mathbf{R}(\alpha)$ for some monotonically incrasing function α on [a, b], then show that $|g| \in \mathbf{R}(\alpha)$, and $\left| \int_a^b g \, d\alpha \right| \le \int_a^b |g| \, d\alpha$. 8

(b) Let r_1 , r_2 , r_3 be curves in the complex plane, defined on $[0, 2\pi]$ by $r_1(t) = e^{2it}$, $r_2(t) = e^{2\pi i t \sin(1/t)}$, $r_3(t) = e^{it}$. Check which of these curves are rectifiable, and find their lengths.

Section II

- **3.** (a) Test for uniform convergence :
 - (i) The sequence $\left\{f_n\right\}$ defined by

$$f_n(x) = \frac{n^2 x}{1 + n^3 x^2}, x \in [0, 1]$$

(ii) The series:

$$\frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} + \dots, -\frac{1}{2} \le x \le \frac{1}{2}$$

(b) Let $f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2} (0 \le x \le 1, n = 1, 2, 3,)$

Show that no subsequence of $\{f_n\}$ can convergence uniformly on [0, 1].

4. (a) For every interval [-a, a], show that there is a sequence of real polynomials P_n such that $P_n(0) = 0$ and such that $\lim_{x \to \infty} P_n(x) = |x|$ uniformly on [-a, a].

10

(b) If f is continuous on [0, 1] and if $\int_{0}^{1} f(x)x^{n} dx = 0, n = 0, 1, 2,, \text{ then show that}$ f(x) = 0 for each x in [0, 1].

Section III

- 5. (a) Suppose E is an open subset of \mathbb{R}^n and f maps E into \mathbb{R}^n . If f is differentiable at $x \in \mathbb{E}$, then show that all partial derivatives $D_i f_j(x)$ exists. Show also that converse of this implication is false. 8
 - (b) Suppose $A \in L(\mathbf{R}^{n-m}, \mathbf{R}^n)$ and suppose A(h, 0) = 0 implies h = 0 for each $h \in \mathbf{R}^n$. Show that for each $y \in \mathbf{R}^m$, the equation A(x, y) = 0 has one and only one solution of x in \mathbf{R}^n .
- 6. (a) If f is real differentiable function in a connected open set $E \subset \mathbb{R}^n$ and if f'(x) = 0 for each x in E, then show that f is constant in E. Can you drop connectedness of E? Justify your answer.
 - (b) Define f(0,0)=0 and $f(x,y)=\frac{x^3}{x^2+y^2}$ if $(x,y)\neq (0,0)$. Show that f is continuous in \mathbb{R}^2 and the restriction of f to any straightt line is differentiable.

(2)L-4315

Section IV

7. (a) Suppose $\sum C_n$ converges. Let $f(x) = \sum_{n=0}^{\infty} C_n x^n$,

-1 < x < 1. Show that $\lim_{x \to 1} f(x) = \sum_{n=0}^{\infty} C_n$. Hence or

otherwise, show that if $\sum a_n$, $\sum b_n$ and

 $\sum C_n$ converge, where $C_n = \sum_{j=0}^n a_0 b_{n-j}$, then

- $\left(\sum a_n\right)\left(\sum b_n\right) = \sum C_n.$
- (b) If $\{\phi_n\}$ is orthonormal on [a, b], if

 $f(x) \sim \sum_{n=1}^{\infty} C_n \phi_n(x)$, show that

 $\sum_{n=1}^{\infty} |C_n|^2 \le \int_a^b |f(x)|^2 \, dx \, .$

8. (a) Suppose K is a compact subset of \mathbf{R}^n and $\{V_{\alpha}\}$ is an open cover of K. Show that there exists function $\psi_1, \psi_2, \dots, \psi_s \in e(\mathbf{R}^n)$ such that :

 $\psi_1(x) + \psi_2(x) + \dots + \psi_s(x) = 1$

for every $x \in K$.

(b) Suppose T is a e'-mapping of an open set $E \subset \mathbb{R}^n$ into an open set $V \subset \mathbb{R}^m$, ϕ is a k-surface in E, and W is a k-form in V. Show that :

$$\int_{\mathsf{T}\phi} w = \int_{\mathsf{\Phi}} w_{\mathsf{T}}$$

Compulsory Question

- 9. (a) Evaluate $\int_0^4 x \, d([x] x)$, where [x] denotes integral part of x.
 - (b) Suppose f is a bounded real function on [a, b], and $f^3 \in \mathbb{R}$ on [a, b]. Does it follow that $f \in \mathbb{R}$? Justify your answer.
 - (c) Show that a continuous map on a metric space need not have a fixed point.
 - (d) Show that a pointwise convergent sequence of functions need not be uniformly convergent.
 - (e) If $A \in L(\mathbf{R}^n, \mathbf{R}^m)$ and if $x \in \mathbf{R}^n$, show that A'(x) = A.
 - (f) If x + y = u, y = uv; find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.
 - (g) Find the interval of absolute convergence for the series $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$.
- (h) State (only) the Stirling's formula. 8×2=16
 (2)L-4315 5