Roll No.

Total Pages: 03

MDE/D-21

4314

ADVANCED ABSTRACT ALGEBRA MM-401

Time: Three Hours] [Maximum Marks: 80

Note: Attempt *Five* questions in all, selecting *one* question from each Section. All questions carry equal marks.

Section I

- 1. (a) Let H be a proper subgroup of a finite p-group G. Prove that $H \neq N_G(H)$
 - (b) State and prove Zassenhauss's Lemma.
- **2.** (a) State and prove Sylow second theorem.
 - (b) Let G be a group. Prove that :

$$o(G/Z(G)) \neq 77$$

Section II

- 3. (a) Let K/F and L/K be finite extensions. Prove that L/F is also finite and [L : F] = [L : K] [K : F].
 - (b) Find the degree of the splitting field of $(X^2 + X + 1)(X^3 2)$ Over Q.

(2)L-4314

- **4.** (a) Prove that $GF(p^m)$ is a subfield of $GF(p^n)$ iff m divides n.
 - (b) Prove that a splitting field is a normal extension.

Section III

- **5.** (a) Prove that an algebraic extension of a finite field is separable.
 - (b) Prove that if α and $\beta \in K/F$ are separable, then $F(\alpha, \beta)/F$ is a simple extension.
- **6.** (a) State and prove Dede kind Lemma.
 - (b) Find the Calois group of the polynomial $X^4 8X^2 + 15$ over Q.

Section IV

- 7. (a) Let A and B be solvable normal subgroups of a group G such that both G/A and G/B are solvable. Prove that G is a solvable group.
 - (b) Let $H\Delta A_n$, $(n \ge 5)$. prove that if H contains one 3-cycle, then $H = A_n$.
- **8.** (a) Prove that the polynomial $X^5 9X + 3$ is not solvable by radicals over Q.
 - (b) Prove that the angle $\pi/3$ cannot be trisected by using ruler and compass only.

(2)L-4314

Section V

- 9. (a) Prove that if G is non-Abelian group of order 125, than o(Z(G) = 5).
 - (b) Write down a composition series for the symmetric group S_4 of degree 4.
 - (c) Find the degree of $\sqrt{3}+1$ over Q.
 - (d) Prove that $Q\left(2^{\frac{1}{3}}\right)\Big|_{Q}$ is not normal.
 - (e) Find the Galois group of $\mathbb{C} \mid R$.
 - (f) Prove that field Q is perfect.
 - (g) Prove that a group of order 21 is solvable.
 - (h) Prove that the number $\sqrt{5}$ is constructible with ruler and compass only.