Roll No.

Total Pages: 3

1193

GSE/D-21

LOGICAL ORGANIZATION OF COMPUTER-I

Time: Three Hours] [Maximum Marks: 80

Note: A candidate will be required to answer *five* questions in all, selecting *one* question from each unit in addition to compulsory question no. 1. All questions carry equal marks.

Compulsory Question

- 1. (a) Why do Digital Computer use Binary Number System?
 - (b) Give Comparison between 1's and 2's Complement.
 - (c) Differentiate between Boolean Alzebra and Ordinary Alzebra.
 - (d) Explain Minterm and Maxterm.
 - (e) Explain XOR Gate.
 - (f) What are the characteristics of Logic gate?
 - (g) Differentiate between Encoder and Decoder?
 - (h) Explain 7-Segment Display. (8×2=16)

UNIT-I

- **2.** Write the Binary Coding for the word BOY in :
 - (a) BCD.
 - (b) ASCII-7.

1193//KD/307 [P.T.O.

- (c) ASCII-8.
- (d) EBCDIC. 16
- **3.** (a) Solve the following Complements Representation of Numbers by using Suitable Example:
 - (i) True Complement.
 - (ii) Radix-Minus-One Complement.

8

(b) Solve the following:

(A)
$$(1101.1)_2 \times (111.01)_2 = (?)_2$$
.

(B)
$$(1100)_2 - (11)_2 = (?)_2$$
.

8

UNIT-II

4. Examine the validity of the following Boolean Functions

(a)
$$(A + B + C) (A + B + \overline{C}) = A + B$$
.

(b)
$$Z\bar{X} + ZXY = ZX$$
.

16

- **5.** What do you mean by K-Map? Simplify the following Expression by K-Map:
 - (a) $\overline{A}B\overline{C} + AB\overline{C} + A\overline{B}\overline{C}$.
 - (b) $A \overline{B}C + AB\overline{C} + \overline{A}BC + ABC + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C}$. 16

UNIT-III

6. Implement the following Boolean functions

 $F = (\overline{A} + B).(A + \overline{C}).(AB + D)$ using NAND gate.

$$F = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC.$$

16

- 7. Design the circuit to realize the Boolean functions :
 - (a) $Y = \overline{A}\overline{B} + \overline{A}C + AB$.
 - (b) $F = ABCD + A\bar{B}CD + ABC\bar{D} + \bar{A}BC\bar{D} + A\bar{B}CD + A\bar{B}C\bar{D} + A\bar{B}C\bar{D} + A\bar{B}\bar{C}\bar{D}$.

UNIT-IV

- **8.** (a) What is Code Convertor? Explain its Working.
 - (b) What do you mean by Combinational Circuit? Design the Half Adder using NAND Gate. 8
- **9.** (a) Explain the working of Comparator. 8
 - (b) What is Decoder? Explain and design BCD to Decimal Decoder.