Roll No.

Total Pages : 4

GSQ/D-21

1064

MATHS. (Numerical Analysis) Paper–BM-353

Time : Three Hours]

[Maximum Marks : 30

Note : Attempt *five* questions in all, selecting *one* question from each section. Q. No. 1 is compulsory.

Compulsory Question

1. (a) Prove
$$\Delta \cos(cx+d) = 2 \sin \frac{ch}{2} \cos\left(cx+d+\frac{ch+\pi}{2}\right)$$
.

- (b) Show that $\Delta^2 x^2$ is independent of x, y, z. y, z
- (c) If X is Poisson variate such that probability P(X = r) for r = 0 is e^{-2} . Find P(X = 1) and P(X = 2).
- (d) Write formula for $\frac{dy}{dx}$ using Newton's Backward formula.

SECTION-I

2. (a) The population of town is as follows :

Year	1961	1971	1981	1991	2001	2011
Population (in lacs)	20	24	29	36	46	51

1064//KD/206

[P.T.O.

Estimate the increase in population during the period 1995 to 2001. 3

- (b) Given that $y_{1.50} = 0.4332$, $y_{1.55} = 0.4394$, $y_{1.60} = 0.4452$, $y_{1.65} = 0.4505$, $y_{1.70} = 0.4554$. Find the values of $y_{1.51}$, $y_{1.52}$, $y_{1.53}$ and $y_{1.54}$.
- **3.** (a) Using Newton's divided formula, find f(x) from the following data :

x	0	1	2	4	5	6
f(x)	1	14	15	5	6	19

(b) Apply Hermite's formula to estimate the value of log 3.2 from the following data :

3

 $3\frac{1}{2}$

x	$f(\dot{x}) = \log x$	$f'(x) = \frac{1}{x}$
3.0	1.0986	0.3333
3.5	1.2528	0.2857
4.0	1.3863	0.2500

SECTION-II

- 4. (a) Using Sterling formula to find f(35), given f(20) = 512, f(30) = 439, f(40) = 346 and f(50) = 243. 3
 - (b) Apply Gauss forward formula to find the value of y_9 , given that $y_0 = 14$, $y_4 = 24$, $y_8 = 32$, $y_{12} = 35$, $y_{16} = 40$. $3\frac{1}{2}$
- 5. (a) The probability that a bomb dropped from a plane hits a target is 0.4. Two bombs can destroy a bridge. If all 6 bombs are dropped, find the probability that the bridge will be destroyed.
 3

1064//KD/206

(b) Suppose a book of 585 pages contains 43 pages with misprints. If these pages are randomly distributed throughout the book; what is the probability that 10 pages, selected at random will be free form pages with misprints. $[e^{-0.735} = 0.4795]$. $3\frac{1}{2}$

SECTION-III

6. (a) The distance (s) covered by a car in given time (t) is given in the following table :

Time (minutes)	:	12	14	18	20	24
Distance (km)	:	14	18	23	25	34
Find acceleratio	n of	the c	car at	t = 1	7 mir	nutes.

(b) Using given's method, reduce the following matrix to the diagonal form :

$$\begin{bmatrix} 2 & 1 & 3 \\ 1 & 4 & 2 \\ 3 & 2 & 3 \end{bmatrix}.$$
 $3\frac{1}{2}$

7. Using House-Holder's method, reduce the matrix $\begin{bmatrix} 1 & 4 & 3 \\ 4 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix}$ to tri-diagonal form. $6^{1/2}$

SECTION-IV

8. (a) Evaluate $\int_{0}^{\pi/2} e^{\sin x} dx$ correct to four decimal places by dividing the range into three equal parts. 3

3

1064//KD/206

[P.T.O.

3

- (b) Use Euler's modified method to get $\frac{dy}{dx} = \log(x + y)$ for y at x = 0.2. Given y = 1 for x = 0. $3\frac{1}{2}$
- 9. (a) Find by Runge-Kutta method an approximate value of y for x = 0.8 given that y = 0.41 when x = 0.4 and $\frac{dy}{dx} = \sqrt{x + y}$.
 - (b) Use Picard's method upto third approximation to solve

the solution
$$\frac{dy}{dx} - 2xy = -1$$
, $y(0) = 0$. $3\frac{1}{2}$