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REAL ANALYSIS

Paper–BM-351

Time : Three Hours] [Maximum Marks : 40

Note : Attempt five questions in all, selecting one question from

each Section. Q. No. 1 is compulsory.

Compulsory Question

1. (a) State First Mean Value theorem. 2

(b) Examine the convergence of 
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(c) Define open and closed sphere in a metric space. 2

(d) State Baire Category theorem. 2

SECTION–I

2. (a) Every bounded function is Riemann-Integrable. Prove

or disprove. 4

(b) Show that f(x) = x is integrable on [a, b] and
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3. (a) Using definition, evaluate 
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(b) State and prove fundamental theorem on integral
calculus. 4

SECTION–II

4. (a) Show that the integral 
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�  exists iff n < m + 1.
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(b) Evaluate 
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5. (a) Examine the convergence of 2 2
.
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(b) Using Frullani's theorem, show that
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SECTION–III

6. (a) Prove that in any metric space, every closed sphere is
a closed set. 4

(b) Give an example of a space which is semi-metric space
but not a metric space. 4
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7. State and prove Cantor's Intersection theorem. 8

SECTION–IV

8. (a) Prove that the function f : R � R defined by f(x) = x2 is
not uniformly continuous on R. 4

(b) Prove that f : (X, d) � (Y, d*) is continuous iff
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9. (a) Prove that a compact subset of a metric space is closed
and bounded. 4

(b) Prove that every compact metric space is complete. 4


