1889

MATHEMATICAL FOUNDATIONS-II

BCA/M21

Paper–BCA-123

Time allowed : 3 Hours

Maximum Marks : 80

Note: Attempt five questions in all, selecting one question from each unit. Question No. 9 is compulsory. All questions carry equal marks.

UNIT-I

Show that : $[(p \rightarrow q) (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology. 1. (i) 8 Construct the truth table of the following statement : (ii) 8 (a) $(p \Leftrightarrow \neg q) \Leftrightarrow (q \Rightarrow p)$ (ii) $(p \land q) \lor \neg (p \lor q)$.

2. (i) Prove by the principle of Mathematical Induction that the sum of first
n natural number is
$$\frac{n(n+1)}{2}$$
. for all $n \in N$. 8

(ii) For all
$$n \in N$$
, show that $11^{n+2} + 12^{2n+1}$ is divisible by 133. 8
UNIT-II

- Show that the set $G = \{-1, 1, -i, i\}$ is a group with respect to 3. (i) multiplication. 8
 - Let $G = \{0, 1, 2, 3, 4\}$. Find the order of the elements of the groups G (ii) under the binary operation 'addition modulo 5.' 8
- 4. Prove that the set of Rational numbers is a field with respect to (i) 8 addition and multiplication.
 - Prove that the necessary and sufficient conditions for a non-empty (ii) subset S of ring R to be a subring of R are

(a)
$$a, b \in S \Rightarrow a - b \in S$$
 (b) $a, b \in S \Rightarrow a - b \in S$. 8
UNIT-III

5. (i) Find the inverse of the matrix :
$$A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$
 8

(ii) Find X and Y if
$$2X + Y = \begin{bmatrix} 4 & 4 & 7 \\ 7 & 3 & 4 \end{bmatrix}$$
 and $X - 2Y = \begin{bmatrix} -3 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$. 8

1889/K/188

6. (i) Find the rank of the following matrix :

- $\left[\begin{array}{rrrr} 0 & -1 & 2 \\ 4 & 3 & 1 \\ 4 & 2 & 3 \end{array}\right]$
- (ii) Using matrix method, solve the following system of equation : 8 x + y + z = 6 x - y + x = 2 2x + y - z = 1.

8

UNIT-IV

7. Find the characteristics roots and the corresponding vectors for the following matrix : 16

$$\left[\begin{array}{rrrr} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{array}\right]$$

8. Verify Cayley Hamilton theorem and find A^{-1} for the matrix : 16

 $\mathbf{A} = \left[\begin{array}{rrrr} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array} \right]$

Compulsory Question

9.	(i)	Identify the quantifiers and write the negation of the statements	"There
		exists a capital for every state in India."	2
	(ii)	Define Normal Subgroups.	2
	(iii)	Define Ring with unity.	2
	(iv)	Define Skew-symmetric matrix with example.	2
	(v)	Find the Spectrum of the matrix : $\begin{bmatrix} 2 & 7 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & -6 \end{bmatrix}$	2
	(vi)	Prove that 'O' is a latent root of a matrix A if A is singular.	2
	(vii)	If A is a square matrix then show that $A + A^{\theta}$ is Hermitian.	2
	(viii) Write composition table for S with respect to multiplication modulo		dulo σ
		where $S = \{0, 1, 2, 3, 4, 5\}.$	2

1889/K/188