Roll No. Total Pages: 04

GSM/J-21

1613

MATHEMATICS Sequences and Series

BM-241

Time: Three Hours] [Maximum Marks: 40

Note: Attempt Five questions in all, selecting one question from each Section. Q. No. 1 is compulsory.

(Compulsory Question)

- 1. (a) Define limit point of a set and give an example ofa set which has two limit points.2
 - (b) Define convergence of a sequence and give an example of a convergent sequence. 2
 - (c) Discuss the convergence of the series $\sum_{n=1}^{\infty} \cos \frac{1}{n}$.

2

(d) Test the absolute convergence of the infinite series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}.$

(5)L-1613

Section I

- 2. (a) Define closed set. Prove that arbitrary intersection of closed sets is a closed set.4
 - (b) State and prove Archimedean property of reals. 4
- 3. (a) Define interior of a set. Prove that interior of a set is an open set.
 - (b) Show that intersection of any family of compact sets is compact.

Section II

- 4. (a) Prove that every bounded sequence has a cluster point.
 - (b) Discuss the convergence of the sequence $\langle a_n \rangle$ where $a_n = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} \dots + \frac{1}{2n-1}$.
- 5. (a) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{x^n + x^{-n}}, x > 0.$
 - (b) Discuss the convergence of the series:

$$\frac{1}{2} + \frac{\sqrt{2}}{5} + \frac{\sqrt{3}}{10} \dots + \frac{\sqrt{n}}{n^2 + 1} + \dots$$

(5)L-1613

Section III

- 6. (a) State and prove Gauss test for the convergence of an infinite series.
 - (b) Test the convergence of infinite series : $(\log 2)^k x^2 + (\log 3)^k x^3 + (\log 4)^k x^4 + \dots, x > 0.$
- 7. (a) State and prove Cauchy Integral test for the convergence of an infinite series.4
 - (b) Test the convergence of $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n$, x > 0.

4

Section IV

8. (a) Discuss the absolute convergence of the series

$$\sum_{n=1}^{\infty} \frac{x^n}{n!} \, . \tag{4}$$

(b) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\csc(\frac{a}{n})}$, where

 $\alpha > 0$.

(5)L-1613

- 9. (a) Test the convergence of $\sum_{n=1}^{\infty} \frac{\sin nx}{n^p}$. p > 0. 4
 - (b) Show that $\prod_{n=0}^{\infty} \left[1 + \left(\frac{1}{2} \right)^{2n} \right]$ converges to 2. 4