Roll No.

Total Pages: 04

MDQ/J-21

5513

8

BOUNDARY VALUE PROBLEMS MM-510 (ii)

Time : Three Hours] [Maximum Marks : 80

Note: Attempt *Five* questions in all, selecting *one* question from each Section and the compulsory question.

Section I

1. (a) Convert the initial value problem: 8

$$\frac{d}{ds}\left(p\frac{dy}{ds}\right) + qy = F(s)$$

$$y(a) = 0, y'(a) = 0$$

into an integral equation.

(b) Solve:

$$y'' + y = F(s)$$

 $y(0) = 1, y'(0) = -1$

2. (a) Define $G_M(s; t)$ with four properties. **8**

(b) Find the boundary value problem that is equivalent to the integral equation:

$$y(s) = \lambda \int_{-1}^{1} (1 - |s - t|) y(t) dt$$

(2)L-5513

Section II

3. (a) Transform the exterior Neumann problem:

$$\nabla^2 u_e = 0, x \in \text{Re}, \frac{\partial u_e}{\partial n}\Big|_{S} = f, u_e\Big|_{\infty} = 0$$

into an integral equation.

8

- (b) Obtain the electrostatic potential due to a thin circular disk.
- 4. Solve the Helmholtz equation :

$$\left(\nabla^2 - k^2\right)u = -4\pi\rho$$

with $u|_{s} = \tau$ and $\frac{\partial u}{\partial n}|_{s} = \sigma$ and give properties of three potentials obtain so. 8+8

Section III

5. (a) Solve the inhomogeneous integral equation: 8

$$g(s) = 1 - \int_0^s (s - t) g(t) dt$$

by Laplace transform.

- (b) Define finite first form Hilbert transform pair and obtain a fourth form of it.

 8
- 6. Explain the method of three-part mixed boundary value problems.

Section IV

- 7. Discuss Perturbation method and its application to electrostatics.
- 8. Formulate the problem of rotary oscillations in Stokes flow and solve it.

Compulsory Question

- 9. (i) What do you mean by mixed boundary value problem?
 - (ii) Give shifting property of Dirac-Delta function. 2
 - (iii) Solve the integral equation:

$$\sin s = \frac{1}{\pi} \int_{-\infty}^{\infty} \left[\frac{g(t)}{(t-s)} \right] dt$$

(iv) Prove that:

$$\Omega(P) = \frac{K(P)}{\left\lceil 1 - K(P) \right\rceil}$$

(v) Prove that Green's function appearing in the equation :

$$-\nabla^2 \mathbf{G} = \delta(x - \xi), \, \mathbf{G}|_{\mathbf{S}} = 0$$

is symmetric.

2

(vi) Give two properties of the Newtonian potential: 2

$$\int_{R} \frac{\rho}{r} dV$$

(2)L-5513

(vii) Prove that:

$$\frac{d}{dx}[H(x)] = \delta x$$

(viii) Define self-adjoint initial value problem. 2

(2)L-5513