Roll No.

Total Pages : 03

MDQ/J-21 5510 ALGEBRAIC NUMBER THEORY MM-509 (Option iii)

Time : Three Hours] [Maximum Marks : 80

Note : Attempt *Five* questions in all, selecting *one* question from each Section and the compulsory question.

Section I

1. Show that $\frac{\sqrt{2}}{3}$ is an algebraic number but not an algebraic integer. Find an integer in such that $m\frac{\sqrt{2}}{3}$ is an algebraic

16

2. Let $\phi_m(x)$ denote the *m*th cyclotomic polynomial, show that $\phi_m(x) \in \mathbb{Z}[x]$ and $\phi_m(x)$ is irreducible in $\mathbb{Q}[x]$ for every $m \ge 1$. 16

Section II

3. Find integral basis for $\mathbb{Q}(\sqrt{2}, \sqrt{-3})$ and for $\mathbb{Q}(\sqrt{5}, \sqrt{13})$. 16

(3)L-5510

integer.

1

4. Let P be a prime ideal of O_k. Then prove that P⁻¹ is a fractional ideal and PP⁻¹ = O_k. Also prove that any ideal of O_k can be written as a product of prime ideals uniquely.
16

Section III

- 5. Compute the different D of $K = \mathbb{Q}(\sqrt{-2})$ and of $K = \mathbb{Q}(\sqrt{-3})$. 16
- 6. Let K > 0 be a square free positive integer. Suppose that $K \equiv 1, 2 \pmod{4}$, and K does not have the form $K = 3a^2 \pm 1$ for an integer *a*, consider the equation : $x^2 + K = y^3$

Show that if 3 does not divide the class number of $\mathbb{Q}(\sqrt{-K})$, then this equation has no integral solution. 16

Section IV

- 7. State and prove law of quadratic reciprocity, using this find $\left(\frac{5}{p}\right)$. 16
- 8. Show that $\mathbb{Q}(\sqrt{-31})$ has class number 3. 16
- (3)L-5510 2

(Compulsory Question)

9.	(a)	If K is an algebraic number field and $\alpha \in K$, define	ne
		trace of α.	2
	(b)	If $K = \mathbb{Q}(i)$, find $\underset{K}{\operatorname{Tr}}(i)$.	2
	(c)	Define fractional ideal.	2
	(d)	Define index of an algebraic integer of degree n.	2
	(e)	Define different of an algebraic number field.	2
	(f)	State Minkowski's bound.	2
	(g)	Find $\left(\frac{2}{3}\right)$.	2
	(h)	Find $\left(\frac{3}{5}\right)$.	2

3