Roll No. Total Pages: 04

MDE/J-21

5506

GENERAL MEASURE AND INTEGRATION THEORY MM-507

Time : Three Hours [Maximum Marks : 80

Note: Attempt *Five* questions in all, selecting *one* question from each Section. Q. No. 9 is compulsory.

Section I

- 1. (a) State and prove Unique Extension Theorem. 8
 - (b) Show that a measure on a ring is countably subadditive. Is it conditionally continuous from above? Justify.

 8
- 2. (a) If f and g are measurable functions defined on X and C is any real number, show that :

$$A = \left\{ x : f(x) < g(x) + c \right\}$$

is locally measurable.

8

(b) If $Q: R \to R$ is continuous, show that Q is Borel measurable.

(5)L-5506

Section II

- 3. State and prove Egoroff's theorem.
- 4. (a) If $0 \le f \le g$, where g is integrable and f is measurable, show that f is also integrable and $\int f d\mu \le \int g d\mu$.
 - (b) If f is a measurable function, show that the following are equivalent: 8
 - (i) f is integrable
 - (ii) |f| is integrable
 - (iii) f^+ and f^- are integrable.

Section III

- 5. If h is integrable with respect to π , show that both integrals of h exist, and $\iint h \, dv \, d\mu = \iint h \, d\mu \, dv = \int h \, d\pi$.
- 6. (a) State and prove Lebesgue decomposition theorem. 8
 - (b) If f is integrable with respect to μ , show that μ_f is AC with respect to μ . State clearly the results used by you.

(5)L-5506

Section IV

- 7. (a) If C is compact G_s , show that there exists a sequence f_n in $\mathcal L$ such that $f_n \downarrow \chi_c$.
 - (b) "Every Baire measure is regular." Prove or disprove this statement.8
- 8. (a) Show that every function in \mathcal{L} is integrable with respect to any Baire measure or any Borel measure. 8
 - (b) State and prove Riesz-Markoff theorem. 8

(Compulsory Question)

- 9. (a) Show that an additive positive set function \mathcal{V} defined on a ring is monotone.
 - (b) Give an example to show that |f| can be measurable without f being measurable.
 - (c) State (only) Arzela Young theorem.
 - (d) Give an example to show that convergence in measure does not imply convergence in mean.
 - (e) State (only) Radon Nikodym theorem.
 - (f) What do you mean by:
 - (i) Measurable rectangle
 - (ii) Cartesian product of two measurable spaces?

(5)L-5506

- (g) If f is a continuous real valued function on X and C is real number, show that $A = \{x : f(x) \ge c\}$ is a closed G_{δ} .
- (h) Define a Borel set and a Borel function. 8×2=16