Roll No.

Total Pages: 04

MDE/J-21

4673

COMPLEX ANALYSIS-II MM-410

Time : Three Hours] [Maximum Marks : 80

Note: Attempt *Five* questions in all, selecting *one* question from each Section and the compulsory question. All questions carry equal marks.

Section I

- 1. (a) State and prove Montel's theorem.
 - (b) Prove that:

$$\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right)$$

by using Weierstrass Factorization theorem.

2. (a) Prove that :

$$\sqrt{\pi} |\overline{(2z)} = 2^{2z-1} |\overline{(z)}| \overline{\left(z + \frac{1}{2}\right)}$$

(2)L-4673

(b) Show that:

$$\overline{|(z)|} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(z+n)} + \int_1^{\infty} e^{-t} t^{z-1} dt$$

fn $z \neq 0, -1, -2, \dots$ (not for Re z > 0 alone)

Section II

3. (a) If Re z > 1, then show that :

$$\zeta(z) = \prod_{n=1}^{\infty} \left[\frac{1}{1 - p_n^{-z}} \right]$$

where $\{p_n\}$ is the sequence of prime numbers.

- (b) State and prove Runge's theorem.
- **4.** (a) State and prove the theorem of uniqueness of analytic continuation along a curve.
 - (b) Show that the function represented by the power $series f(z) = \sum_{n=0}^{\infty} z^{2^n} cannot be continued$ analytically.

Section III

5. (a) State and prove Monodromy theorem.

(2)L-4673

(b) If f(z) is analytic in the closed disc $|z| \le R$. Assume that $f(0) \ne 0$ and no zeros of f(z) lies on |z| = R. If z_1, z_2, \ldots, z_n are the zeros of f(z) in the open disc |z| < R each repeated as often as its multiplicity and $z = re^{i\theta}$, 0 < r, R, $f(z) \ne 0$ then show that :

$$\log|f(z)| = -\sum_{i=1}^{n} \log \left| \frac{R^2 - \overline{z}_i z}{R(z - z_i)} \right| +$$

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{\left(R^2 - r^2\right) \log \left| f\left(Re^{i\phi}\right) \right|}{R^2 - 2Rr\cos(\theta - \phi) + r^2} d\phi$$

- 6. (a) State and prove Hadamard's three circle theorem.
 - (b) Show that if G is a bounded Dirichlet Region then for each $a \in G$ there is a Green's function on G with singularity at a.

Section IV

7. (a) If f(z) is an entire function of order ρ and convergence exponent σ , then show that :

$$\sigma \leq \rho$$

- (b) State and prove Bloch's theorem.
- 8. (a) State and prove Little-Picard theorem.
 - (b) State and prove Montel-Carathedory theorem.

Section V

(Compulsory Question)

- 9. (i) State Riemann mapping theorem.
 - (ii) Evaluate $\boxed{\left(\frac{1}{2}\right)}$.
 - (iii) State Riemann's Hypothesis.
 - (iv) State Schwarz reflection principle.
 - (v) Define Poisson Kernel $P_r(\theta)$ and show that it periodic in θ with period 2π .
 - (vi) Define Dirichlet Region.
 - (vii) Find the order of $\cos z$.
 - (viii) Define univalent function.