Roll No.

Total Pages : 04

MDE/J-21 4671 MATHEMATICS Real Analysis-II MM-408

Time : Three Hours]

[Maximum Marks : 80

Note : Attempt *Five* questions in all, selecting *one* question from each Section and the compulsory question.

Section I

1. (a) Let $\{A_n\}$ be a countable collection of sets of real numbers. Show that : 6

$$m^*\left(\bigcup_{n=1}^{\infty} \mathbf{A}_n\right) \leq \sum_{n=1}^{\infty} m^*(\mathbf{A}_n)$$

- (b) Show that the class m of all measurable sets is a σ -algebra. 10
- 2. (a) Construct a set which is not Lebesgue measurable.8

(3)L-4671 1

(b) Let {f_n} be a sequence of measurable functions (with the same domain of definition). Show that the functions sup{f₁, f₂,....,f_n}, inf{f₁, f₂,....,f_n}, sup f_n, inf f_n lim f_n, lim f_n are all measurable.

Section II

- 3. (a) State and prove Egoroff's theorem. 10
 (b) Show that every sequence which is convergent in measure has an almost everywhere convergent subsequence. 6
- 4. (a) Let f be defined and bounded on a measurale set E with mE finite. Show that f is measurable if and only if :

$$\inf_{f \le \Psi} \int_{\mathcal{E}} \Psi(x) dx = \sup_{f \ge \phi} \int_{\mathcal{E}} \varphi(x) dx$$

for all simple functions ϕ and ψ . 10

(b) If f and g are bounded measurable functions defined on a set E of finite measure, show that : 6

$$\int_{\mathbf{E}} \left(af + bg \right) = a \int_{\mathbf{E}} f + b \int_{\mathbf{E}} g$$

(3)L-4671

Section III

- (b) Let f be a non-negative function which is integrable over a set E. Show that for gives $\varepsilon > 0$ there is a $\delta > 0$ such that for every set $A \subset E$ with $mA < \delta$ where $\int_A f < \varepsilon$. 6
- 6. State and prove Vitali's covering lemma. 16

Section IV

(a) Let f be an integrable function on [a, b], and suppose that :

$$\mathbf{F}(x) = \mathbf{F}(a) + \int_{a}^{x} f(t) dt.$$

Show that F'(x) = f(x) for almost all x in [a, b]. 8

(b) If φ is continuous function on (a, b) and if one derivative, of φ is nondecreasing, show that φ is convex.

(3)L-4671

3

8. (a) If f and g are in L^p with $1 \le p \le \infty$, show that so is f + g and

$$||f+g||_{p} \le ||f||_{p} + ||g||_{p}.$$

If 1 , show that equality can hold only if $there are non-negative constants <math>\alpha$ and β such that $\beta f = \alpha g$. **8**

(b) Show that the
$$L^p$$
 spaces are complete. 8

(Compulsory Question)

- **9.** (a) Give an example to show that a set with outer measure zero need not be countable.
 - (b) Show that ϕ and \mathbb{R} are measurable sets.
 - (c) Define almost uniform convergence.
 - (d) State (only) Lebesgue theorem regarding points of discontinuties of Riemann integrable functions.
 - (e) State (only) Lebesgue differentiation theorem.
 - (f) Give an example to show that strict inequality may occur in Fatou's lemma.
 - (g) State (only) Riesz representation theorem for bounded linear functionals or L^p spaces.
 - (h) State (only) Jensen's inequality. $8 \times 2 = 16$

(3)L-4671
