Total Pages : 04

Roll No.

MDE/J-214670ADVANCEDABSTRACTALGEBRA-IIMM-407MM-407

Time : Three Hours] [Maximum Marks : 80

Note : Attempt *Five* questions in all, selecting *one* question from each Section and the compulsory question.

Section I

- 1. Let G be a group and let G' be the derived group of G then prove that :
 - (i) $G' \Delta G$ 5
 - (ii) $\frac{G}{G'}$ is abelian 5
 - (iii) If H \triangle G, then $\frac{G}{H}$ is abelian if and only if $G' \subset H$.
- 2. (a) Prove that a group of order p^n is nilpotent of class at most *n*. 8

(b) Give an example of a group which is not nilpotent.

1

8

(3)L-4670

Section II

(b) If V is *n*-dimensional over F and if
$$T \in A(V)$$
 has
all its characteristic roots in F, then T satisfies a
polynomial of degree *n* over F. **8**

- 4. (a) Prove that the elements S and T in A(V) are similar in A(V) if and only if they have the same elementary divisors.
 - (b) If F is the field of rational numbers, find all possible rational canonical forms and elementary divisors for the 6×6 matrices in F₆ having $(x 1)(x^2 + 1)^2$ as minimal polynomial. **8**

Section III

5. (a) Let A and B be R-submodules of R-modules M and N, respectively. Prove that : 8

$$\frac{M \times N}{A \times B} \simeq \frac{M}{A} \times \frac{N}{B}$$

(3)L-4670

- (b) Let R be a ring with unity. Prove that an R-module M is cyclic if and only if $M \simeq \frac{R}{I}$ for some left ideal I of R. **8**
- 6. (a) Let M be a finitely generated free module over a commutative ring R. Prove that all bases of M have the same number of elements.
 - (b) Prove that every finitely generated module is a homomorphic image of a finitely generated free module.8

Section IV

- 7. (a) Determine whether Z as a Z-module is artinian. 8
 (b) A subring of a noetherian ring need not be noetherian. Justify this statement. 8
- 8. (a) State and prove Hilbert basis theorem.
 8 (b) Prove that a Boolean noetherian ring is finite and is indeed a finite direct product of fields with two elements.

(Compulsory Question)

9. (a) Prove that [a, b] = e if and only if ab = ba.
2
(b) Prove that : 2

$$\begin{bmatrix} a, b \end{bmatrix}^g = \begin{bmatrix} a^g, b^g \end{bmatrix}$$

(3)L-4670

(c)	Define basic Jordan block belonging to λ . 2
(d)	Define index of nilpotence of a linear
	transformation. 2
(e)	Define finitely generated module. 2
(f)	Define simple module. 2
(g)	Let V be an <i>n</i> -dimensional vector space over a field
	F. Then V is artinian or not ? 2
(h)	If S is nonempty subset of a ring R, define left
	annihilator of S in R. 2

(3)L-4670

4
