Roll No	Total Pages: 03		
GSM/M-21	1620		
33,			

PHYSICS

Statistical Physics

Paper: VII

Time : Three Hours] [Maximum Marks : 40

Note: Question No. 1 is compulsory. Attempt *four* more questions, selecting *one* question from each Unit. Use of scientific (non-programmable) calculator is allowed.

- (a) Explain the meaning of thermodynamic probability of a macrostate in system of particles by taking an example.
 - (b) Discuss the limits on volume of a cell in phase space in classical and quantum statistics. 2
 - (c) Discuss the limitations of Einstein's model for specific heat of a solid.
 - (d) Distinguish between Bose-Einstein and Fermi-Dirac statistics.

Unit I

2. (a) Derive a relation for probability of a macrostate having a deviation 'x' from the probability of most

(5)L-1620

probable	macro	ostate	of	a	dist	ribution	of	'n'
distinguisl	nable	partio	cles	iı	nto	two	ident	ical
compartme	ents a	nd ana	lyse	it	grapl	hically.		5

- (b) What are laws of addition and multiplication of probabilities? Explain with examples.3
- (a) Discuss the general distribution of 'n' distinguishable particles into 'R' compartments of unequal sizes and derive relation for thermodynamic probability of a macrostate of the system.
 - (b) Derive condition for thermal equilibrium of two systems of particles in thermal contact. Derive relation between entropy and thermodynamic probability of a system of particles.

Unit II

- Using Maxwell-Boltzmann law of distribution of speeds, derive expressions for most probable, average and root mean square speeds of molecules of a gas. Obtain relation between these.
- Derive Maxwell distribution law of speeds for 'n' molecules of a gas enclosed in a chamber at temperature 'T'. Depict the relation graphically. Explain the peak in the graph.
 8

Unit III

- 6. (a) Derive an expression for the most probable distribution of particles for a system obeying Bose-Einstein statistics.
 - (b) Show that Maxwell-Boltzmann distribution is a limiting case of Bose-Einstein distribution. 2
- 7. What is Fermi gas? Obtain a relation for the energy of this gas at absolute zero temperature. Give its physical significance.8

Unit IV

- 8. (a) Discuss Dulong-Petit law of specific heat of solids and the experimental observations for the variation of specific heat of a solid with temperature. Also, derive the relation for the specific heat of a solid on the basis of classical theory.
 - (b) What are the assumptions of Einstein's theory of specific heat of solids?
- 9. Discuss Debye theory and obtain a relation for specific heat of solids on the basis of this theory. Also, discuss the result at high and low temperature conditions as obtained from this theory.8