Roll No.

Total Pages: 4

GSE/M-20

1450

MATHEMATICS (Vector Calculus)

Paper: BM-123

Time: Three Hours] [Maximum Marks: 27

Note: Attempt *five* questions in all. Question No. 1 is compulsory. Select *one* question from each section.

Compulsory Question

- 1. (a) Find the volume of a parallelopiped whose edges are represented by $\vec{a} = 2\hat{i} 3\hat{j} + 4\hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} \hat{k}$ and $\vec{c} = 3\hat{i} \hat{j} + 2\hat{k}$.
 - (b) If the vectors \vec{a} , \vec{b} , \vec{c} and \vec{d} are coplanar, then show that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = 0$.
 - (c) Find a so that the vector

$$\vec{f} = (axy - z^3)\hat{i} + (a-2)x^2\hat{j} + (1-a)xz^2\hat{k}$$
 is irrotational.

- (d) Show that div (curl \vec{f}) = 0.
- (e) Determine the transformation from cylindrical to rectangular co-ordinates.

1

SECTION-I

- 2. (a) Show that the vectors $\vec{a} 2\vec{b} + 3\vec{c}$, $-2\vec{a} + 3\vec{b} 4\vec{c}$ and $\vec{a} 3\vec{b} + 5\vec{c}$ are coplanar. $2\frac{1}{2}$
 - (b) The necessary and sufficient condition for the vector function \vec{f} of a scalar variable t to have a constant magnitude is $\vec{f} \cdot \frac{d\vec{f}}{dt} = 0$.
- 3. (a) Show that $\vec{a} \times (\vec{b} \times \vec{c})$, $\vec{b} \times (\vec{c} \times \vec{a})$ and $\vec{c} \times (\vec{a} \times \vec{b})$ are coplanar.
 - (b) The necessary and sufficient condition for the vector function \vec{f} of a scalar variable t to have constant direction is $\vec{f} \times \frac{d\vec{f}}{dt} = 0$.

SECTION-II

- **4.** (a) For any vector \vec{a} , show that $\nabla(\vec{a} \cdot \vec{r}) = \vec{a}$, where \vec{r} is the position vector of a point. Hence show that grad $[\vec{r} \ \vec{a} \ \vec{b}] = \vec{a} \times \vec{b}$.
 - (b) Prove that $\nabla^2 [r \ \vec{r}] = \left(\frac{4}{r}\right) \vec{r}$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, and $|\vec{r}| = r$.

5. (a) If div
$$(\phi(r)\vec{r}) = 0$$
 where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, and $|\vec{r}| = r$, then prove that $\phi(r) = \frac{c}{r^3}$.

(b) Prove that
$$\nabla^2 \left[\frac{x}{r^2} \right] = -\frac{2x}{r^4}$$
.

SECTION-III

- **6.** (a) Express the vector $\vec{A} = z\hat{i} 2x\hat{j} + y\hat{k}$ in cylindrical coordinates. Hence determine A_{ρ} , A_{θ} and A_{z} . $2\frac{1}{2}$
 - (b) If (r, θ, ϕ) are spherical co-ordinates, show that

$$\nabla \left(\frac{1}{r}\right) = \nabla \times (\cos \theta \, \nabla \phi).$$

- 7. (a) Transform the function $\vec{f} = P\hat{e}_{\rho} + P\hat{e}_{\phi}$ from cylindrical to cartesian co-ordinates. $2\frac{1}{2}$
 - (b) Express the velocity \vec{v} and accleration \vec{a} of a particle in cylindrical co-ordinates.

SECTION-IV

8. (a) Evaluate the line integral $\int_C \vec{f} \cdot d\vec{r}$ about the traingle whose vertices are (1, 0), (0, 1) and (-1, 0) where $\vec{f} = y^2 \hat{i} - x^2 \hat{j}$.

- (b) Verify Green's theorem in the plane for $\oint_C (xy + y^2) dx + x^2 dy, \text{ where C is the closed curve of the region bounded by } y = x \text{ and } y = x^2.$
- 9. (a) Evaluate $\iint_{S} \vec{f} \cdot \hat{n} dS$, where $\vec{f} = (x + y^2)\hat{i} 2x\hat{j} + 2yz\hat{k}$ and S is the surface of the plane 2x + y + 2z = 6 in the first octant.
 - (b) Evaluate $\oint_C f \cdot d\vec{r}$ by Stoke's theorem, where $\vec{f} = y^2 \hat{i} + x^2 \hat{j} (x+z)\hat{k}$ and C is the boundary of triangle with vertices at (0, 0, 0) (1, 0, 0) and (1, 1, 0).

1450//KD/462