Total Pages : 03

CMDQ/M-205516MATHEMATICAL ASPECTS OF
SEISMOLOGY
MM-511 (Opt. i)

Time : Three Hours][Maximum Marks : 80Note : Attempt *Five* questions in all. Q. No. 1 is compulsory.

Attempt one question from each Section.

Roll No.

1.	(a)	Define epicentre of an earthquake.	2
	(b)	Explain wave profile.	2
	(c)	Derive the relation between wavenumber	and
		velocity of a wave.	2
	(d)	What is difference between body waves and sur-	face
		waves ?	2
	(e)	Find the wavenumber of the wave :	2
		$\varphi = a\sin(5x + 4y + 6z - 4t)$	
	(f)	Explain earthquake magnitude.	2
	(g)	Give layered structure of the Earth.	2
	(h)	Define area source.	2

(2)L-5516

1

Section I

2.	(a)	Write wave equation in spherical coordinates. O	btain
		stationary type solution of this equation when	there
		is an axial symmetry.	10
	(b)	Explain plane waves.	6
3.	(a)	Define dispersion and derive relation between g	roup

- velocity and phase velocity.8(b) State principle of superposition and using that
 - explain stationary waves. 8

Section II

- Given that P wave is incident at the plane boundary between two liquid half-spaces. Derive reflection and refraction coefficients by making use of Snell's law. Describe special cases also.
- 5. Define a surface wave. Find the condition of existence of the Love waves. Prove that these waves are dispersive.

16

Section III

 Solve two-dimensional Lamb's problem of area source in an unlimited elastic solid.
16

(2)L-5516 2

Formulate a three-dimensional Lamb's problem for a point source acting on the surface of an elastic solid half-space and obtain the solution in terms of displacements. 16

Section IV

8.	Deri	ve Sommerfield's integral.	16
9.	(a)	Explain release of energy during an earthquake	. 8
	(b)	Derive Poisson's formula.	8

3