Roll No.

Total Pages : 03

MDQ/M-20 5510 ALGEBRAIC NUMBER THEORY MM-509 (Opt. iii)

Time : Three Hours] [Maximum Marks : 80

Note : Attempt *Five* questions in all, selecting *one* question from each Section and the compulsory question.

Section I

- 1. Show that Liouville's theorem holds for α , where α is real or complex algebraic number of degree greater than one. 16
- 2. Let *m* be any positive integer and *n* be any integer ≥ 3 . Show that $x^n + y^2 = m$ has only finitely many integral solutions. 16

Section II

3. Let K/Q be an algebraic number field of degree *n*. Show that $d_k \in \mathbb{Z}$ and $d_k \equiv 0$ or 1 (mod 4). 16

(2)L-5510 1

4. If **a** and **b** are ideals of O_k . Let $\mathbf{a} = \prod_{i=1}^r \mathbf{p}_i^{e_i}$, $\mathbf{b} = \prod_{i=1}^r \mathbf{p}_i^{f_i}$

with $e_i, f_i \in \mathbb{Z}$ and $e_i, f_i \ge 0$. Show that :

g.c.d.
$$(a, b) = \prod_{i=1}^{r} p_i^{\min(e_i, f_i)}$$
 and

L.C.M.
$$(a, b) = \prod_{i=1}^{r} p_i^{\max(e_i, f_i)}$$
 16

Section III

- 5. Find a prime ideal factorization of (2), (5) and (11) in $\mathbf{Z}[i]$. 16
- 6. Show that the equation $x^2 + 5 = y^3$ has no integral solution. 16

Section IV

7. Let S be Gauss sum. Prove that :

$$s^{2} = \left(-\frac{1}{p}\right)^{p}$$
 and $s^{2} \equiv \left(\frac{q}{p}\right)s \pmod{q}$

where p and q are distinct odd primes. 16

(2)L-5510

8.	Show that $\mathbf{Q}(\sqrt{-11})$	has class number 1	and $\mathbf{Q}(\sqrt{-15})$
	has class number 2.		16

Section V

(Compulsory Question)

9.	(a)	If k is an algebraic number field and $\alpha \in k$, defined and $\alpha \in k$, defined and $\alpha \in k$.	ine
		norm of α .	2
	(b)	If $k = \mathbf{Q}(i)$, find $N_k(i)$.	2
	(c) Define Dedekind domain.		2
	(d)	Define index of submodule in module.	2
	(e)	Define ramification degree of prime ideal p_{i} .	2
	(f)	Define Hurwitz constant H _k .	2
	(g) Find $\left(\frac{2}{5}\right)$.		2
	(h)	Find $\left(\frac{5}{7}\right)$.	2

(2)L-5510

3