Roll No.

Total Pages : 04

Time : Three Hours]

[Maximum Marks : 80

Note : Attempt *Five* questions in all, selecting at least *one* question from each Section and the compulsory question. All questions carry equal marks.

Section I

- 1. (a) State and prove Hurwitz's theorem.
 - (b) Show that :

$$\cos \pi z = \prod_{n=1}^{\infty} \left[1 - \frac{4z^2}{(2n-1)^2} \right]$$

2. (a) State and prove Riemann mapping theorem.

(b) If $\operatorname{Re}(z) > 0$, prove that :

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt \, .$$

(2)L-4668

Section II

3. (a) Prove that :

$$\zeta^2(z) = \sum_{n=1}^{\infty} \frac{d(n)}{n^z}$$

for Re z > 1, where d(n) is the number of divisors of n.

- (b) State and prove Mittag-Leffler's theorem.
- 4. (a) Show that the function :

$$f(z) = 1 + z + z^{2} + z^{3} + \dots + z^{n} + \dots$$

can be obtained outside the circle of convergence of the power series.

(b) State and prove Schwarz's reflection principle.

Section III

5. (a) Show that Poisson Kernel $Pr(\theta)$ satisfies the following properties :

(i)
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{P}_r(\theta) d\theta = 1$$

- (ii) $P_r(\theta) > 0$ for all θ , $Pr(-\theta) = Pr(\theta)$ and P_r is periodic in θ with period 2π .
- (b) State and prove Hornack's theorem for harmonic function.

(2)L-4668

6. If f(z) is analytic within and on the circle r such that $|z| = \mathbb{R}$ and if f(z) has zeros at the points $a_i \neq 0$ (i = 1, 2, ..., m) and poles at $b_j \neq 0$ (j = 1, 2, ..., n) inside r, multiple zeros and poles being repeated, then show that :

$$\frac{1}{2\pi} \int_0^{2\pi} \log \left| f\left(\operatorname{Re}^{i\theta} \right) \right| d\theta = \log \left| f\left(0 \right) \right| + \sum_{i=1}^m \log \frac{R}{|a_i|} - \sum_{i=1}^n \log \frac{R}{|b_j|}$$

Section IV

- 7. (a) State and prove Borel's theorem.
 - (b) State and prove Hadamard's factorization theorem.
- 8. (a) State and prove Schottky's theorem.
 - (b) State and prove $\frac{1}{4}$ theorem.

Compulsory Question

- 9. (i) State Montel's theorem.
 - (ii) Find $\Gamma(1), \Gamma(2)$ and $\Gamma\left(\frac{1}{2}\right)$.
 - (iii) Define Riemann zeta function.
 - (iv) Define function element.
 - (v) State Harnack's inequality.

(2)L-4668

- (vi) Construct the canonical product associated with sequence of negative integers.
- (vii) Find the order of $\sin z$.
- (viii) State Bieberbach conjecture

4