Total Pages : 04

Roll No.

MDE/M-20 4665 ADVANCED ABSTRACT ALGEBRA-II MM-407

Time : Three Hours] [Maximum Marks : 80

Note : Attempt *Five* questions in all, selecting *one* question from each Section and the compulsory question.

Section I

1. (a) Find elements of S_3 which are commutators. 8

(b) State and prove three subgroup lemma of P. Hall.

8

2. Let G be a nilpotent group of class C. Then prove that :

(a) Every factor group of G is nilpotent of class $\leq C$. 8

(b) Every subgroup of G is nilpotent of class $\leq C$. 8

Section II

(2)]	A((5	<u>j</u>		1			
	if and	only if	they have	the	same	invariants.	16
3.	Prove	that two	nilpotent	linea	ar tran	sformations	are similar

4. (a) Let $T \in A_F(V)$ have all its distinct characteristic roots, $\lambda_1, \lambda_2, \dots, \lambda_k$, in F. Prove that a basis of V can be found in which the matrix of T is of the form :

$$\begin{pmatrix} \mathbf{J}_1 & & & \\ & \mathbf{J}_2 & & \\ & & \ddots & \\ & & & \mathbf{J}_k \end{pmatrix}$$

Where each

$$\mathbf{J}_{i} = \begin{pmatrix} \mathbf{B}_{i_{1}} & & & \\ & \mathbf{B}_{i_{2}} & & \\ & & \ddots & \\ & & & \mathbf{B}_{ir_{i}} \end{pmatrix}$$

and where $B_{i_1}, B_{i_2}, \dots B_{i_{r_i}}$ are basic Jordan blocks belonging to λ_i . 10

(b) Prove that the matrix :

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$$

is nilpotent and find its invariants and Jordan form.

6

(3)L-4665

Section III

- 5. (a) Let R be a ring with unity, and let M be a R-Module, prove that the following statements are equivalent :
 - (i) M is simple
 - (ii) $M \neq (0)$, and M is generated by any $0 \neq x \in M$.
 - (iii) $M \approx \frac{R}{I}$, where I is a maximal left ideal of R. 10
 - (b) State and prove Schur's lemma. 6
- 6. (a) Let M be a free R-Module with a basis $\{e_1, e_2, ..., e_n\}$. Prove that $M \simeq R^n$.
 - (b) Let V be a non-zero finitely generated vector space over a field F. Prove that V admits a finite basis.

8

Section IV

- 7. (a) Determine whether Z as a Z-module is noetherian. 8
 (b) A subring of an artinian ring need not be artinian. Justify this statement. 8
- 8. State and prove Wedderburn-Artin theorem. 16

3

(3)L-4665

(Compulsory Question)

9.	(a)	Prove that :	2
		$[a, b]^{-1} = [b, a]$	
	(b)	Prove that :	2
		$a^b = a[a, b]$	
	(c)	Define Companian matrix of :	2
		$f(x) = \lambda_0 + \lambda_1 x + \dots + \lambda_{r-1} x^{r-1} + x^r$	•
	(d)	Define characteristic polynomial of a	linear
		transforamtion.	2
	(e)	Define cyclic module.	2
	(f)	Define completely reducible module.	2
	(g)	Define finitely cogenerated R-module.	2
	(h)	ield F.	
		Then V is noetherian or not ?	2

(3)L-4665

4