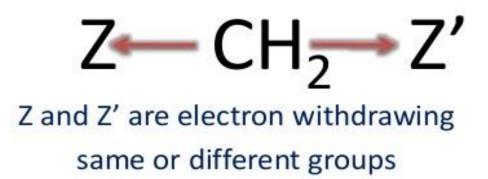


Organic synthesis via Enolates • Topics to be studied:


- Active methylene group and active methylene compounds.
- Enols and Enolate ions
- Enolisation :Acid catalysed and base catalysed enolisation
- Ethyl aceto acetate
- Claisen Condensation
- Keto Enol tautomerism
- Synthetic Applications

Active methylene group and compounds

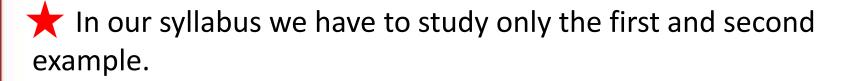
What do you mean by active methylene group? Give its General Formula.

A methylene (-CH₂-) group which is located between two electron withdrawing groups.

General Formula:

 A methylene group (-CH₂) which is attached from both sides by electron withdrawing groups (e.g. – CHO, >C=O, -COOH, -COOR, -CN, -X etc.) is called active methylene group.

What do you mean by active methylene compounds? Give their examples.


- Compounds containing active methylene group are active methylene compounds.
- Examples :
- Ethyl acetoacetate H₃C.CO CH₂ CH₂ COOC₂H₅
- Diethyl malonate
 H₅C₂OOC CH₂→COOC₂H₅
- 3.Ethyl cyanoacetate

 $NC \leftarrow CH_2 \rightarrow COOC_2H_5$

4.Oxalic acid

HOOC ← CH₂→COOH

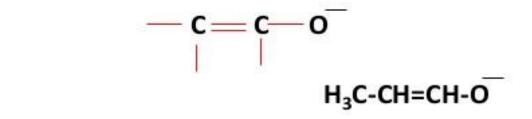
5. 1,3-Cyclohexadione

Enols and Enolate ions

What are enols and enolate ions?

Enols :

Compounds containing hydroxy group directly attached to a c=c bond.

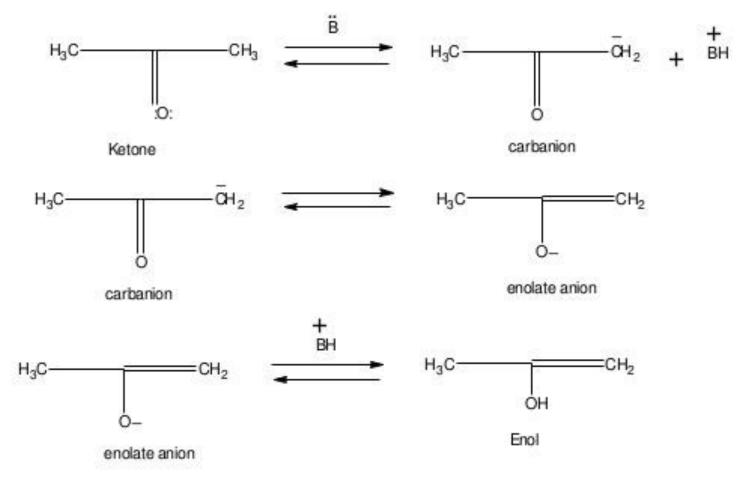

e.g.

e.g.

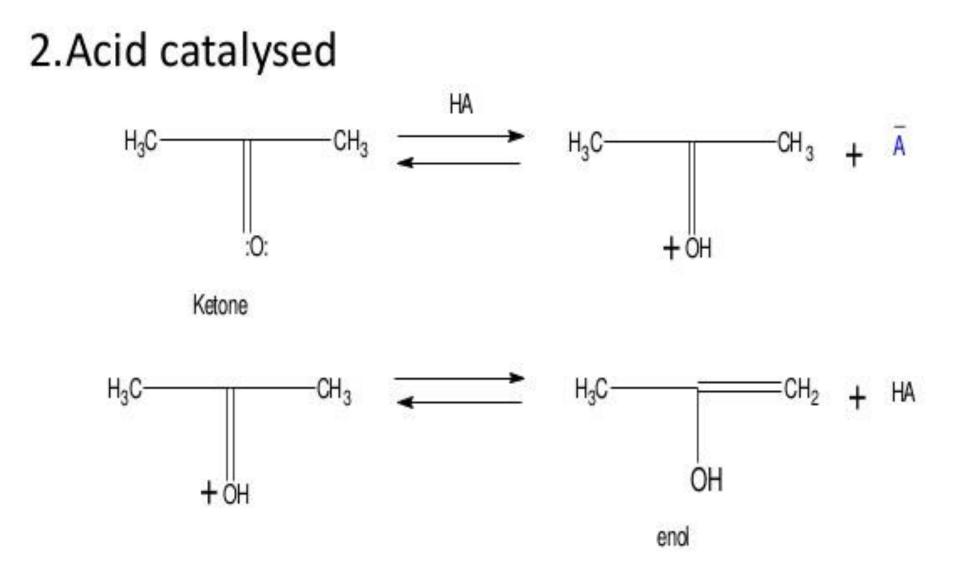
H₃C-CH=CH-OH

Enolate ions:

Anions of enols are called as enolate ions

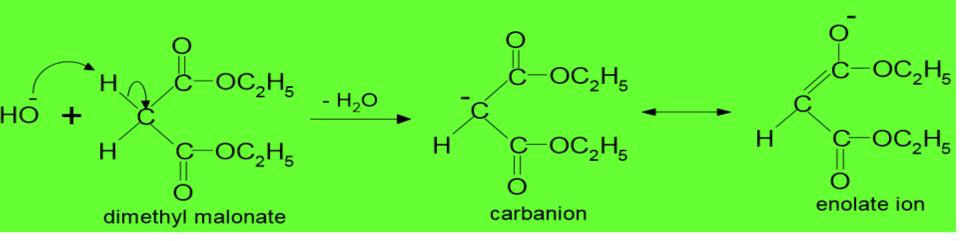

Enolisation

The conversion of a ketone into an enol is known as enolisation.


<u>Usually this is a reversible</u> tautomerization but it can be <u>irreversible.</u>

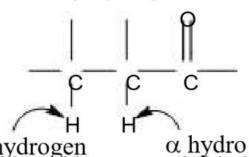
Mechanism of enolisation

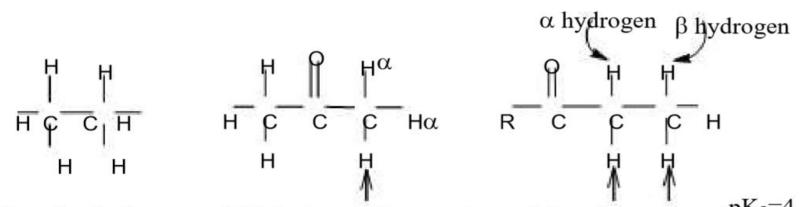
1. Base catalysed


Mechanism of enolisation

Before we further move to next topic we should revise

Acidity of *α*-hydrogen

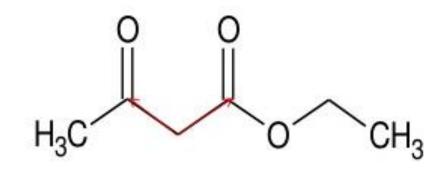

- The hydrogen atoms of active methylene group are acidic in nature.
- The compounds containing active methylene group when treated with base, looses hydrogen atoms to form carbanion.
- This carbanion is stabilized by another resonating structure called as enolate ion.


1. Acidity of **A** hydrogens:

The α (alpha) - hydrogen is the hydrogen atom that is bound to the carbon (called as α - carbon atom) adjacent to the carbonyl carbon. The next carbon is the β -carbon and the

hydrogen atoms attached to it are called as β -hydrogen atoms and so on.

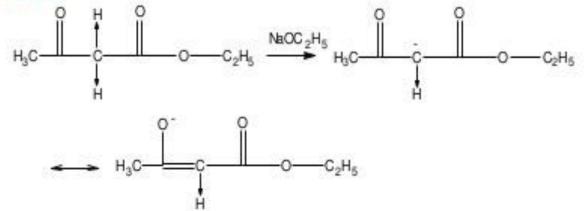
 β hydrogen α hydro Aldehydes and ketones are weak acids and have remarkably low pKa values (between 15 and 20). Hence, they may act as a Bronsted acid in an acid-base reaction with a strong base. But, aldehydes and ketones are much stronger acids **than** alkanes. Due to the only minor difference in electronegativity between hydrogen and carbon, C-H bonds in alkanes are hardly polarized. Thus, hydrogens of alkanes are in fact not acidic. The pKa values of alkanes are around 50.


The acidity of α -hydrogens of aldehydes and ketones is much less than carboxylic acids, which have pK_a values around 3 to 4.

Ethyl aceto acetate

Structure:

active methylene

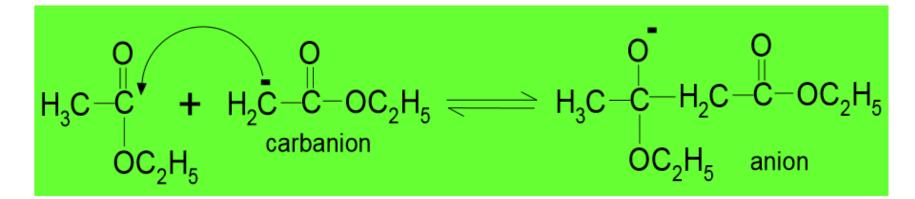

 CH_3 -CO \leftarrow CH_2 \rightarrow $COOC_2H_5$

Why is methylene group in EAA reactive?

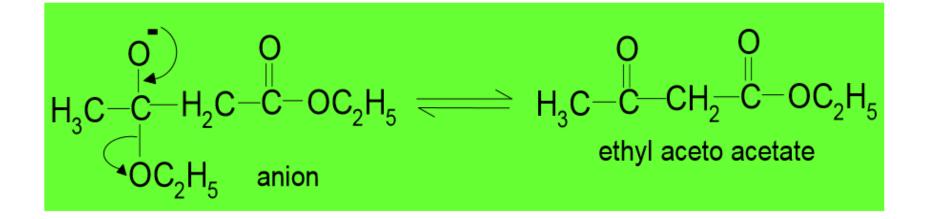
Because :

- Inductive effect: CH₂ group is located between two electron withdrawing groups(-I effect).hence two C-H bonds are weak.
 H
 CH₃-CO← C→COOC₂H₅
- 2.Resonance effect : Base abstracts proton from methylene group to form a carbanion which is stabilised by resonance.

Synthesis of Ethyl acetoactate Claisen condensation


Ethyl acetate undergoes self condensation in the presence of strong base like sodium ethoxide to give ethyl aceto acetate.

2 CH₃-COOC₂H₅ NaOC₂H₅ Ethyl acetate CH_3 - $COCH_2COOC_2H_5 + C_2H_5OH$ Ethyl acetoacetate


- This base catalyzed condensation of ester containing αhydrogen atom is called Claisen condensation.
- Mechanism: It involves following steps.
- a. a) Base abstract α H atom from ethyl acetate to form carbanion.

$$C_{2}H_{5}O + H_{2}C - C - OC_{2}H_{5} \rightarrow H_{2}C - C - OC_{2}H_{5} + C_{2}H_{5}OH$$

ethyl acetate carbanion

b. This carbanion attacks on carbonyl carbon of another ethyl acetate molecule to form anion.

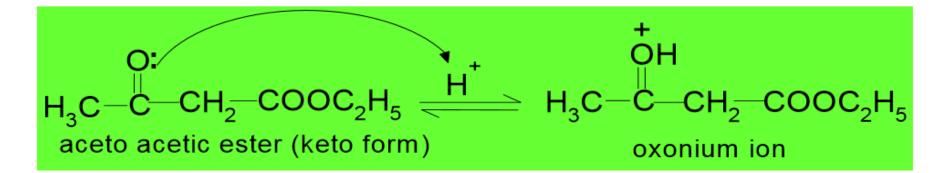
c. This anion looses ethoxide ion to form ethyl aceto acetate.

Keto-Enol Tatuomerism

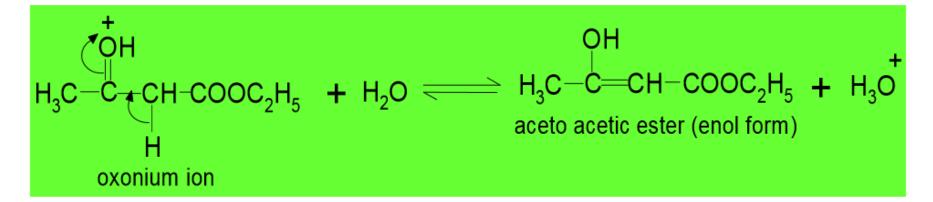
- Ethyl aceto acetate exists as an equilibrium mixture of two functional forms as keto and enol. These two forms are constantly interconvert into one another.
- This phenomenon in which two structural isomers spontaneously interconvert and exist in dynamic equilibrium is called tatuomerism.

$$\begin{array}{ccc} O & OH \\ H_3C - C - CH_2 - COOC_2H_5 & \longrightarrow & H_3C - C - CH - COOC_2H_5 \\ \text{aceto acetic ester (keto form)} & \text{aceto acetic ester (enol form)} \end{array}$$

• The tatuomer which containing carbonyl group is called keto form while other tatuomer which containing hydroxyl group attached to double bonded carbon is called enol form.


- **Mechanism:** Keto and enol forms are isomers which are easily interconvertible in presence of small amount of acid or base.
- **A.** Base Catalyzed Keto-Enol Tatuomerism:
 - In first step, Base abstract proton from EAA to form carbanion which is resonance stabilized.

$$\begin{array}{c} O \\ H_{3}C \\ H_{3}C \\ H_{2}C \\ H_{3}C \\ H$$


• In second step, enolate ion takes proton from water molecule to form enol form of EAA.

$$\begin{array}{cccc} O^{\bullet} & OH \\ H_{3}C - C = CH - COOC_{2}H_{5} + H_{2}O & \Longrightarrow H_{3}C - C = CH - COOC_{2}H_{5} + HO \\ & \text{enolate ion} & \text{EAA (enol form)} \end{array}$$

- **B.** Acid Catalyzed Keto-Enol Tatuomerism
- In first step, carbonyl oxygen takes proton from acid to form oxonium ion.

• In second step, oxonium ion looses proton to form enol form.

Synthetic applications of EAA

Syntheses of various carboxylic acids and methyl ketones. Common steps involved :

- 1. Na-salt formation: Reaction with Na-alkoxide, one or both alpha hydrogen atoms get replaced by Na.
- 2. Alkylation : reaction of Na-salt of EAA with RX to form mono or dialkylated EAA.
- 3.Hydrolysis : Depending on nature of product desired one of the following procedures is used
 - i) Ketonic hydrolysis : Alkylated EAA is heated with dil. alkali or acid. Hydrolysis yields ketone as the product.
 - ii) Acid hydrlysis : Alkylated EAA is heated with con. NaOH followed by acidification. Hydrolysis yields carboxylic acid as the product.

1. Synthesis of alkyl aceto acetic ester:-

• Aceto acetic ester when treated with sodium ethoxide gives carbanion which on further treatment with alkyl halide gives corresponding alkyl derivative.

• This alkyl aceto acetic ester again on treatment with sodium ethoxide followed by reaction with alkyl halide gives dialkyl aceto acetic ester.

- 2. Synthesis of Mono-carboxylic acid: Higher carboxylic acids prepared by alkyllating EAA followed by hydrolysis.
- EAA when treated with sodium ethoxide and methyl iodide gives methyl EAA which on further hydrolysis gives propanoic acid.

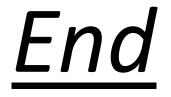
$$\begin{array}{c} O\\ H_{3}C - C - CH_{2} - COOC_{2}H_{5} \xrightarrow{i)C_{2}H_{5}ONa} \\ aceto acetic ester \end{array} \xrightarrow{i)H_{3}C - I} H_{3}C - C - HC - COOC_{2}H_{5} \\ H_{3}C - C - HC - COOC_{2}H_{5} \\ CH_{3} \\ methyl aceto acetic ester \\ \xrightarrow{i) conc. KOH} H_{3}C - C - OH + H_{3}C - H_{2}C - OH + C_{2}H_{5}OH \\ ii) H^{+/}H_{2}O \end{array}$$

• EAA when treated with sodium ethoxide and ethyl iodide gives methyl EAA which on further hydrolysis gives butanoic acid.

$$\begin{array}{c} O\\ H_{3}C - C - CH_{2} - COOC_{2}H_{5} \xrightarrow{i) C_{2}H_{5}ONa} \\ aceto acetic ester \end{array} \xrightarrow{i) H_{3}C - CH_{2}^{-1}} H_{3}C - C - HC - COOC_{2}H_{5} \\ CH_{2} - CH_{3} \\ ethyl aceto acetic ester \end{array}$$

3. Synthesis of Dicarboxylic Acid: -

- Aceto acetic ester on treatment with sodium ethoxide gives carbanion which on condensation with halo ester followed by hydrolysis gives corresponding dicarboxylic acid.
- Aceto acetic ester on treatment with sodium ethoxide gives carbanion which on condensation with ethyl chloro acetate followed by hydrolysis gives succinic acid.


$$H_{3}C - C - CH_{2} - COOC_{2}H_{5} \xrightarrow{C_{2}H_{5}ONa}_{-C_{2}H_{5}OH} + H_{3}C - C - CH - COOC_{2}H_{5}Na^{+} \xrightarrow{C_{1}-CH_{2}-COOC_{2}H_{5}}_{-NaCl} + OCC_{2}H_{5}Na^{+} \xrightarrow{C_{1}-CH_{2}-COOC_{2}H_{5}}_{-NaCl} + OCC_{2}H_{5}Na^{+} \xrightarrow{C_{1}-CH_{2}-COOC_{2}H_{5}}_{-NaCl} + C_{2}H_{5}OH + C_{2}H_$$

- 4. Synthesis of unsaturated acid:-
- AAE on condensation with aldehyde or ketone in presence of base (pyridine) gives intermediate which on further acid hydrolysis gives α, β-unsaturated acid.
- AAE on condensation with acetaldehyde in presence of base (pyridine) gives intermediate which on further acid hydrolysis gives crotonic acid.

$$H_{3}C-C=0 + H_{3}C-CO-CH_{2}-COOC_{2}H_{5} \xrightarrow{\text{pyridine}}_{-H_{2}O} + H_{3}C-CO-C-COOC_{2}H_{5}$$
acetaldehyde aceto acetic ester CH-CH_{3}
$$\xrightarrow{i) \text{ conc. KOH}}_{ii) H^{+}/H_{2}O} + H_{3}C-COOH + CH_{3}-CH-CH-COOH + C_{2}H_{5}OH$$
acetic acid crotonic acid

5. Synthesis of ketone: -

• AAE on alkylation gives corresponding alkyl aceto acetic acid which on hydrolysis gives corresponding carboxylic acid intermediate. This intermediate carboxylic acid further on decarboxylation gives ketone.

<u>of</u> Lecture - 1